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Abstract

Bias in how facial classification machine learning (ML) models label faces is a burgeoning problem; as the use of
such models becomes widespread, it is more important than ever to identify the weaknesses in the models and
how they could potentially discriminate against various class, like race, gender, or age. In this study, we run
two widely used facial classification models (FairFace and DeepFace) on a popular face dataset (the UTKFace
Dataset) and perform two sample proportion hypothesis tests – as well as evaluating model output using common
ML performance metrics – in order to highlight and identify potential bias in the aforementioned classes. We
found that DeepFace had significant bias in age and race, with white males being classified more accurately than
other factor categories; FairFace performed significantly better with less detected bias, affirming the intended goal
of FairFace being built specifically to be more “fair” (less biased) on various categories. The implications lead
us to recommend more work to be done on improving facial classification ML models, in order for them to be
equitable and fair to all humans they are run on.

Report PDF and Code Location

A link to download the PDF version of this report, a link to the Github source code for this report, and the
Youtube presention are available as icons in the top nav bar of this website.
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1 Introduction

The issue of algorithmic bias, especially concerning sensitive and personal data, is an ongoing problem in today’s
use of Artificial Intelligence (AI). Facial recognition is one field that is struggling with mitigating and minimizing
the issue. According to a report by the National Institute of Standards and Technology, the rates of false positives,
or misidentification, of African and East Asian faces were 10 to 100 times higher than those for White or European
faces (NIST 2020). Numerous studies have found that many facial recognition algorithms, having been based and
created in white-dominated spaces, often lack accuracy with darker faces, especially compared to their identification
of white faces. This issue has caused numerous problems throughout the development of facial recognition. For
instance, a Georgetown study found that African Americans were significantly misidentified in law enforcement
databases, due to being overrepresented in mugshots (Georgetown Law 2016). That sort of misinterpretation could
lead to unlawful arrests, accusations, or sentencings. A facial recognition algorithm has two main areas where
these sorts of biases occur: the actual coding/iteration, and the data used to train it. The databases used to
teach an algorithm how to make decisions and identify faces matter, from the balance of different races, genders,
and ages, to how well those databases use facial markers to identify anything. As facial recognition becomes more
widespread, this becomes a key question of data ethics and misuse (Lohr 2018).

Thus, it is necessary to examine existing algorithms for their accuracy in identifying faces properly. Two easily
accessible algorithms that claim to do just that are FairFace, created by UCLA researchers (Karkkainen and Joo
2021), and DeepFace (Serengil and Ozpinar 2021), created by a team of researchers at Facebook. Both claim to
accurately identify the race, gender, and age of any given photo. FairFace claims to have reduced bias compared to
other common facial recognition algorithms. FairFace was trained on a balanced dataset, eqully stratified across
race, including Middle Eastern Faces. The creators point out in their work that the majority of training datasets
overwhelmingly represent white and male subjects, lending to algorithmic biases in any models leveraging such
data for training (Karkkainen and Joo 2021). The DeepFace algorithm was developed by a team at Facebook,
now Meta, and also aims to be an accessible and accurate open-source facial recognition system. In their paper
on research and development of DeepFace, the creators claim 97% accuracy on gender prediction, but only 68%
accuracy on race and ethnicity. There is a more complex discussion of age prediction, and the creators further state
that a previous study produced more accurate results when compared to the current model. Furthermore, the
current model was claimed to be less accurate than human-provided predictions (Serengil and Ozpinar 2021).

Research Questions

• Are biases prevalent in facial recognition machine learning models?
• Can we find biases using proportionality testing and by more traditional measurements?
• How does proportionality testing compare to more traditional measurements?
• How do the results change when from an overall perspective versus specific subsets within the data?

Our goal in this research is to test the strength of the models’ claims and compare the algorithms’ ability to
predict age, gender, and race against a source dataset. Both will be tested against the UTKFace dataset, which
consists of over 24,000 labeled faces that can be used for research purposes (“UTKFace” 2021). We will identify
potential biases in the modelsl using two-sample proportion hypothesis testing, and by inspect specific instances
of such bias using performance metrics such as F1 score and accuracy.

5



2 Data

Pursuant to the study, the team sought out multiple datasets on which we could evaluate the performance of
two selected recognition models (Karkkainen and Joo 2021; Serengil and Ozpinar 2021) to generate performance
data and perform statistical analysis on their ability to accurately identify race, age, and gender of a subject in a
photograph.

Collectively, we landed on the UTK dataset to perform our evaluation (“UTKFace” 2021). The dataset has three
main sets available for download from the main page: A set of “in-the-wild” faces, which are the raw unprocessed
images. The second set is the Aligned & Cropped Faces, which have been cut down to allow facial algorithms
to read them more easily. The final file is the Landmarks (68 points) dataset, which contains the major facial
landmark points that algorithms use and process to examine the images.

2.1 Data Selection

2.1.1 Motivation

Joy Buolamwini, a PhD candidate at MIT Media Lab, published a paper on gender and racial biases in facial
recognition in algorithms (Buolamwini 2023). In her paper, she tested facial recongition softwares from multiple
large technology companies such as Microsoft, IBM, and Amazon on its effectiveness for different demographic
groups. Her research led to a surprising conclusion that most AI algorithms offer a substantially less accurate
prediction for feminine/female faces, particularly those with dark skin color.

To determine the degree in which bias is still present in modern facial recognition models, a dataset which comprise
of face images with high diversity in regards to ethnicity is required. Upon searching, UTKFace came out as one
of the largest datasets which fit our preferred qualifications.

2.1.2 Data Collection Method

The dataset utilized for this research is UTKFace dataset. It is a publicly available large scale face dataset non-
commercial on Github. The dataset was created by Yang Song and Zhifei Zhang, researchers at Adobe and PhD
candidates at The University of Tennessee, Knoxville. On its Github page, it is specified that the images were
collected from the internet. They appear to be obtained through the application of technique such as web scraping.
The dataset contains more than 24,000 face images, representing a highly diversified demographics. However, face
images vary in pose, facial expression, lighting, and resolution.

2.1.3 Dataset Features

The input dataset provided feature information natively in each filename without additional external data. The
features contained therein include the following items for each image’s subject. They are defined as follows:

• “race is an integer from 0 to 4, denoting White, Black, Asian, Indian, and Others (like Hispanic, Latino,
Middle Eastern).”

• “gender is either 0 (male) or 1 (female)”
• “age is an integer from 0 to 116, indicating the age”
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As our work is focused in potential biases in protected classes such as race, gender, and age, the features of
UTKFace are sufficient to meet the needs for an input dataset for category prediction in our selected models.
Examples of the source dataset images are in Figure 2.1.

(a) Age=6, Gender=F, Race=Indian (b) Age=38, Gender=M, Race=White (c) Age=80, Gender=M, Race=Asian

Figure 2.1: Example face images from the UTK dataset (“UTKFace” 2021) with their associated given labels.

2.1.4 Sources and Influences of Bias in the Dataset

Facial datasets can be extremely hard to categorize correctly, never mind reducing bias overall. Facial features that
are androgynous or defer from the average features of the set can often be misrepresented or reported incorrectly.
Those with features that make them look younger or older than their actual age may also be difficult for a computer
to accurately guess.

The datasets used for analysis contain solely male/masculine and female/feminine faces. As stated above, the
faces are labelled either 0, for male, or 1, for female. There are no gender non-conforming/non-binary/trans faces
or people reported in the datasets, which could introduce potential bias. This absence of an entire category of
facial features could also result in inaccurate guesses should these faces be added to the data later.

The datasets do not report nationality or ethnicity. This can introduce inaccuracy in the part of the identification,
and it also may identify the face in a racial group that the person identified would consider inaccurate. This is as
much a matter of potentially inaccurate data as it is social labels. There is also a level of erasure associated with
simply creating a “multi-racial” category, given that it would bin all multiracial faces together with no further
consideration. That is to say, there is no ideal solution to the issue at this time. However, it is always worth
pointing out potential biases in data, research, and analysis.

The data given in the UTK dataset is composed purely of people who have their faces on the internet. This
introduces a potential sampling bias. Given the topic, it is also likely to come from populations well-versed in
technology. This can often exclude rural populations. Thus, the facial data present can be skewed towards urban
residents or other characteristics, which can potentially create “lurking variables” that we aren’t aware of within
the data. This is a common problem that many Anthropological and Sociological studies face when collecting and
analyzing data. Being aware of the possibility is often the first, and most crucial, step towards reducing it.

Our source dataset, and thus our results and conclusions, are dependent on the correctness of labeling of images
within the UTK dataset. Given that the dataset was web-scraped, we do not know the degree of care placed on
dataset labeling during web-scraping. Any incorrect labels present in the data can skew our results.
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Overall, all the given potential biases listed above are simply the largest and most easily identified. It is possible
that other sources of bias are present in the data that we haven’t noticed. And identifying these biases does not
mean that the data is not sound, or that any conclusions drawn from it are invalid. It simply indicates that further
research should be done and that this data is far from the most complete picture of human facial features and
identification. Examples of what is in the data, as well as a visualization of the bias present in the data, can be
seen in Figure 2.2.

2.1.5 Exploration of Source Data

For initial exploration of the UTKFace dataset, we sought to determine the distribution of age, given other
categorical variables. To support hypothesis testing, such as z-tests, t-tests, or proportionality tests, it is important
for us to inspect our data for a normal distribution. In our case, we are only able to initially inspect age, as it is
the only numerical variable from our data available.

Examining the data in Figure 2.2, we have a somewhat normal distribution of age with heavy tails, centered
between the ages of 30 and 35. To examine distributions of categorical variables, we will perform a bootstrapped
sampling of proportions of such variables, and include them in our results section. Having such distributions will
provide normal distributions and support us in evaluating our results.

(a) Image data EDA

(b) Image dataset visualization

Screenshots of the interactive figure showcasing the dis-
tributions of various data factors in the image dataset,
and showcasing the underlying data. To see and interact
with this figure, go to the website link

Figure 2.2

2.1.6 Assumption of Sample Independence

For each of the selected facial recognition models, we assume that each model’s training dataset is independent
of the content of the UTKFace dataset. Independence between each model’s output and the source data is a
requirement for performing our testing. We have no means or methods to verify whether or not any UTKFace
images were used in the training of either model, and must make this assumption before moving forward in our
methods and results.
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2.2 Selected Models

2.2.1 FairFace

Developed by researchers at University of California, Los Angeles, FairFace was specifically designed to mitigate
gender and racial biases. The model (Karkkainen and Joo 2021) was trained on 100K+ face images of people
of various ethnicities with approximately equal stratification across all groups. Beside facial recognition model,
FairFace also provided the dataset (Karkkainen and Joo 2021) which it was trained on. The dataset is immensely
popular among facial recognition algorithm developers. Owing to its reputation in bias mitigation, FairFace
appears to be a valuable piece for the objective of this research.

2.2.2 DeepFace

DeepFace is a lightweight open-source model developed and used by Meta (Facebook). Being developed by one of
the largest social media companies, it is widely known among developers. Therefore, its popularity prompts us to
evaluate its performance. It should be noted that the DeepFace model we leverage in our evaluation is a free open
source version (Serengil and Ozpinar 2021). It is highly unlikely that this version is as advanced as any model
Meta uses internally for proprietary purposes. We should not view the resulting output of this model as being
representative of algorithms internal to Meta.

2.2.3 FairFace Outputs

FairFace outputs provided predictions age and race, and two different predictions for race - one based upon their
“Fair4” model, and the other based upon their “Fair7” model. In addition to these predictions, the output included
scores for each category. With the nature of our planned analyses, the scores are of less importance to us in our
evaluation.

To examine more in detail on “Fair” and “Fair4” models, the latter provided predictions of race in the following
categories: [White, Black, Asian, Indian]. Of note, the “Fair4” model omitted “Other” categories as listed in
the race category for the UTK dataset. However, the “Fair7” model provides predictions across [White, Black,
Latino_Hispanic, East Asian, Southeast Asian, Indian, Middle Eastern]. We elected to use the Fair7 model, and
to refactor the output categories to match those of the UTK dataset. Namely, we refactored instances of Middle
Eastern and Latino_Hispanic as “Other” and instances of “East Asian” and “Southeast Asian” as “Asian” to
match the categories explicitly listed in UTKFace.

Additionally, FairFace only provides a predicted age range as opposed to a specific, single, predicted age as a
string. To enable comparison of actual values to the predicted values, we maintained this column as a categorical
variable, and split it into a lower and upper bound of predicted age as an integer in the event we require it for our
analyses.

With the above considerations in mind, the following output features are of import to the team:
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Table 2.1: FairFace Output Format

Column Name Data Type Significance Valid Values
name_face_align String The name and path of

the file upon which
FairFace made
predictions

[filepath]

race_preds_fair7 String The predicted race of
the image subject

[White|Black|Latino_Hispanic|East
Asian|Southeast
Asian|Middle
Eastern|Indian]

gender_preds_fair String The predicted gender
of the image subject

[Male|Female]

age_preds_fair String The predicted age
range of the image
subject

[’0-2’|’3-9’|’10-19’|’20-
29’|’30-39’|’40-49’|’50-
59’|’60-69’|’70+’]

2.2.4 DeepFace Outputs

Default outputs provide a wide range of information for the user. In addition to providing its predictions, DeepFace
also provides scores associated with each evaluation on a per-class basis (i.e. 92% for Race #1, 3% Race #2, 1%
Race #3, and 4% Race #4). For our planned analyses, the score features are of less concern to us.

We focus on the following select features from DeepFace outputs to have the ability to cross-compare between
UTKFace, FairFace, and DeepFace:

Table 2.2: DeepFace Output Format

Column
Name

Data Type Significance Valid Values

Age Integer The predicted age of
the image subject

Any Integer

Dominant
Gender

String The predicted gender
of the iamge subject

[Man|Woman]

Dominant
Race

String The predicted race of
the image subject

[middle east-
ern|asian|white|latino
hispanic|black|indian]

2.3 Evaluating Permutations of Inputs and Models for Equitable Evaluation

Aside from the differences in the outputs of each model in terms of age, race, and gender, there are also substantial
differences between FairFace and DeepFace in terms of their available settings when attempting to categorize and
predict the features associated with an image.

The need for this permutation evaluation rose from some initial scripting and testing of these models on a small
sample of images from another facial dataset. We immediately grew concerned with DeepFace’s performance
using default settings (namely, enforcing requirement to detect a face prior to categorization/prediction, and using
OpenCV as the default detection backend). Running these initial scripting tests, we encountered a face detection
failure rate, and thus a prediction failure rate, in DeepFace of approximately 70%.
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We performed further exploratory analysis on both models in light of these facts, and sought some specific per-
mutations of settings to determine which may provide the most fair and equitable comparison of the models prior
to proceeding to analysis.

The goal for us in performing this exploration was to identify the settings for each model that might best increase
the likelihood that the model’s output would result in a failure to reject our null hypotheses; our tests sought out
the combination of settings that give each model the benefit of the doubt, and for each to deliver the greatest
accuracy in their predictions. For simplicity’s sake, we leaned solely on the proportion of true positives across each
category when compared with the source information to decide which settings to use.

2.3.1 DeepFace Analysis Options

DeepFace has a robust degree of available settings when performing facial categorization and recognition. These
include enforcing facial detection prior to classification of an image, as well as 8 different facial detection models
to detect a face prior to categorization. The default of these settings is OpenCV detection with detection enabled.
Other detection backends include ssd, dlib, mtcnn, retinaface, mediapipe, yolov8, yunet, and fastmtcnn.

In a Python 3.8 environment, attempting to run detections using dlib, fastmtcnn, retinaface, mediapipe, yolov8,
and yunet failed to run, or failed to install the appropriate models directly from source during execution. Repairing
any challenges or issues with the core functionality of DeepFace and FairFace’s code is outside the scope of our work,
and as such, we have excluded any of these non-functioning models from our settings permutation evaluation.

2.3.2 FairFace Analysis Options

The default script from FairFace provided no options via its command line script to change runtime settings. It
uses dlib/resnet34 models for facial detection and image preprocessing, and uses its own Fair4 and Fair7 models for
categorization. There are no other options or flags that can be set by a user when processing a batch of images.

We converted the simple script to a class in Python without addressing any feature bugs or errors in the underlying
code. This change provided us some additional options when performing the analysis of an input image using
FairFace - namely, the ability to analyze and categorize an image with or without facial detection, like the
functionality of DeepFace. FairFace remains limited in the fact that is only detection model backend is built in
dlib, but this change from a script to a class object gave us more options when considering what type of images
to use and what settings to use on both models before generating our final dataset for analysis.

2.3.3 Specific Permutations

With the above options in mind, we designed the following permutations for evaluation on a subset of the UTK
dataset:

Table 2.3: List of Permutation Evaluations

Detection Detection Model Image Source
Enabled FairFace=Dlib; DeepFace=OpenCV Pre-cropped
Enabled FairFace=Dlib; DeepFace=OpenCV In-The-Wild
Enabled FairFace=Dlib; DeepFace=mtcnn Pre-cropped
Enabled FairFace=Dlib; DeepFace=mtcnn In-The-Wild
Disabled FairFace,DeepFace=None Pre-cropped
Disabled FairFace,DeepFace=None In-The-Wild

We processed each of the above setting permutations against approximately 9800 images, consisting of images
from part 1 of 3 from the UTK dataset. Each of the cropped images (cropped_UTK_dataset.csv) and uncropped
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images (uncropped_UTK_dataset.csv) came from the same underlying subject in each image; the only difference
between each image was whether or not it was pre-processed before evaluation by each model. Having the same
underlying source subject enables us to perform a direct comparison of results between cropped vs. in-the-wild
images, and better support a conclusion of which settings to use.

Table 2.4: Results of Permutation Evaluation

pred_model detection_model image_type all_rate age_grp_rate gender_rate race_rate
DeepFace None cropped 0.07 0.16 0.67 0.70
DeepFace None uncropped 0.08 0.15 0.73 0.65
DeepFace mtcnn cropped 0.09 0.15 0.72 0.68
DeepFace mtcnn uncropped 0.10 0.16 0.78 0.67
DeepFace opencv cropped 0.03 0.08 0.19 0.20
DeepFace opencv uncropped 0.08 0.15 0.66 0.59
FairFace None cropped 0.40 0.61 0.89 0.77
FairFace None uncropped 0.10 0.27 0.76 0.45
FairFace dlib cropped 0.40 0.61 0.89 0.77
FairFace dlib uncropped 0.44 0.62 0.92 0.79

Examining the true positive ratios for each case, our team concluded that the settings that gave both models the
best chance for success in correctly predicting the age, gender, and race of subject images are as follows:

• FairFace: enforce facial detection with dlib, and use uncropped images for evaluation

• DeepFace: enforce facial detection with MTCNN detection backend and use uncropped images for evaluation.

These settings are equitable and make a degree of sense. Using facial detection, specifically coded for each model,
should give each model the ability to isolate the portions of a face necessary for them to make a prediction, as
opposed to using a pre-cropped image that could include unneeded information, or exclude needed information.

Having decided on these settings, our team proceeded to run the entirety of the UTK dataset through both
DeepFace and FairFace models using a custom coded script that allowed us to apply multiprocessing across the
list of images and evaluate all items in a reasonable amount of time.

Due to the resource-intensive design of FairFace, our script enables multiprocessing of FairFace to allow for multiple
simultaneous instances of the FairFace class as a pool of worker threads to iterate over the source data.

We attempted the same multiprocessing methodology for DeepFace, but encountered issues with silent errors
and halting program execution when iterating over all images using DeepFace. To alleviate this challenge, we
processed DeepFace in a single-threaded manner, and with smaller portions of the dataset vs. pursuing an all-in-
one go execution. We proceeded to store the data for each of these smaller runs in multiple output files to combine
once we completed all processing requirements.

2.4 Model Evaluation Data Format

The final listing of all inputs and outputs from each model, with standardization methods discussed in this section
applied, are summarized in Table 2.5.

12



Table 2.5: Data Format for All Inputs and Outputs

Column Name Definition Data Type
img_path Relative path location of the file within

the UTK dataset
character vector

file The filename of each file within the UTK
dataset

character vector

src_age The age of the subject in each image
from the UTK dataset

integer

src_gender The gender of the subject in each image
from the UTK dataset

character vector

src_race The race of the subject in each image
from the UTK datset

character vector

src_timestamp The time at which the image was
submitted to the UTK dataset

character vector

src_age_grp The age group (matching the predicted
age ranges from the FairFace outputs) for
each image in the UTK dataset

character vector

pred_model The model used to produce the predicted
output (FairFace or DeepFace)

character vector

pred_race The race of the subject in the image,
predicted by the given prediction model
under the pred_model column

character vector

pred_gender The gender of the subject in the image,
predicted by the given prediction model
under the pred_model column

character vector

pred_age_DF_only The integer-predicted age by DeepFace of
the subject in the image

integer

pred_age_grp The age group of the subject in the
image, predicted by the given prediction
model under the pred_model column

character vector

pred_age_lower The integer lower bound of the predicted
age group

integer

pred_age_upper The integer upper bound of the predicted
age group

integer
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3 Methods

As described in the previous section, the two selected models (DeepFace and FairFace) are run on the UTK face
dataset in order to generate output of classification across 3 categories (age, race, and gender). We evaluate the
performance of this classification, and perform hypothesis testing in order to answer the key research questions.

3.1 Data Cleaning: Standardizing Model Outputs

As can be seen in Chapter 2, there are some key differences between the outputs of both models as well as the
source data that we needed to resolve to enable comparison of each dataset to one another. We’ll focus on the
primary features of age, gender, and race from each dataset.

3.1.1 FairFace Output Modifications

We’ll discuss FairFace first, as it introduces a requirement for modification to both our input information as well
as the outputs for DeepFace.

• Age: FairFace only provides a categorical predicted age range as opposed to a specific numeric age. We
retain this age format and modify the last category of “70+” to “70-130” to ensure we can capture the gamut
of all input and output ages in all datasets.

• Gender: No changes to predicted values; use “Male” and “Female”

• Race: the source data from UTKFace has 5 categories “White” “Black” “Asian” “Indian” and “Other”.
Using the definitions from UTKFace, we collapse the output categories of FairFace’s Fair7 model as follows:

Model Classification Refactored Classification
Southeast Asian, East Asian Asian
Middle Eastern, Latino_Hispanic Other

3.1.2 DeepFace Output Modifications

• Age: Cut the predicted age into bins based upon the same prediction ranges provided by FairFace. If the
DeepFace predicted age falls into a range provided by FairFace, provide that as the predicted age range for
DeepFace.

• Gender: we adjust the DeepFace gender prediction outputs to match that of the source and FairFace data.

• Race: we adjust the DeepFace race prediction outputs to match that of the source dataset.

Our refactoring is as follows for DeepFace:

Model Classification Refactored Classification
woman Female
man Male
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Model Classification Refactored Classification
white White
black Black
indian Indian
asian Asian
middle eastern, latino hispanic Other

3.1.3 Source Data Modifications

• Age: We cut the predicted age into bins based upon the same prediction ranges provided by FairFace. If
the input / source data age falls into a range provided by FairFace, provide that is the source age range for
the image subject.

• Gender: No changes.

• Race: No changes.

3.2 Exploratory Data Analysis (EDA)

Our EDA performed on the source UTK dataset can be seen in the previous section in Figure 2.2. The EDA
performed on the output from the models can be summarized as follows, and is presented in the Results section:

• Visualization of the histograms of distributions of predictions, per each category, per each model

We also perform some meta-analysis on the statistics and performance metrics calculated from the model outputs:

• Visualization of the p-values vs F1-score across all hypothesis tests across both models
• Confusion matrix of whether we reject or fail to reject the null hypothesis based on power and F1 score

3.3 Hypothesis Testing

Our data consists of three main sets: the source input data, the Fairface output data, and the Deepface output
data.

We’ll be creating our hypothesis tests by running as two-sample proportion tests. The population is the set of all
labels (of race, age, and gender as defined below) for a given image, for all face images. The first sample will be
the source dataset “correct” labels of the images, and the 2nd sample will be the output of a given model between
FairFace and DeepFace, respectively. The base null hypothesis will produce no difference in sample proportions.
Gaining a statistically significant result would allow us to reject our null hypothesis in favor of the alternative
hypothesis.

In other words, rejecting the original assumption means there is a statistically large enough difference between
the source data and output data, and could indicate that the source and predicted information originate from
differing populations, which is a potential indicator of bias for or against the protected classes in question. We
use a significance level of 99.7% to mitigate the risk of rejecting the the null hypothesis when it is true.

We’ll be testing across different subsets contained within the data, as listed below:
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3.3.1 Demographics

• Age Group
• Gender
• Race

3.3.2 Demographics’ Subgroups

• Age Group (9 groups)

– 0-2
– 3-9
– 10-19
– 20-29
– 30-39
– 40-49
– 50-59
– 60-69
– 70-130

• Gender (2 groups)

– Female
– Male

• Race (5 groups)

– Asian
– Black
– Indian
– Other
– White

3.3.3 The General Proportion Tests

Our hypothesis tests will be testing different proportions within these subgroups between the source data and the
output data.

The general format of our hypothesis tests will be:

𝐻0 ∶ 𝑝1 = 𝑝2

𝐻𝐴 ∶ 𝑝1 ≠ 𝑝2

With the following test statistic:

( ̂𝑝1 − ̂𝑝2)

√ ̂𝑝(1 − ̂𝑝)( 1
𝑛𝑝1

+ 1
𝑛𝑝2

)

With the p-value being calculated by:

𝑃(|𝑍| > 𝑧|𝐻0)
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= 𝑃(|𝑍| > ( ̂𝑝1 − ̂𝑝2)

√ ̂𝑝(1 − ̂𝑝)( 1
𝑛𝑝1

+ 1
𝑛𝑝2

)
),

With

̂𝑝 =
̂𝑝1 ∗ 𝑛𝑝1

+ ̂𝑝2 ∗ 𝑛𝑝2

𝑛𝑝1
+ 𝑛𝑝2

Where:

• 𝑝1 = the source dataset categories labels given and 𝑝2 = the chosen model’s labels given.
• ̂𝑝 = the pooled proportion.
• 𝑛𝑝1

, 𝑛𝑝2
= the size of each sample.

We also calculate the power of each test performed, and use a power level threshold of 0.8 in order to assess the
strength of the p-value calculated.

Our research explores the possiblity of using two-sample proportion testing as a means by which one could evaluate
the performance of a machine learning model; we are uncertain as to whether or not it is appropriate. In leveraging
two-sample proportion tests, we can infer whether the proportions of age, gender, or race (or some combination
thereof) from the UTKFace dataset (i.e. 1st sample) originate from the same population as the outputs from each
facial recognition model (i.e. 2nd dataset).

In theory, substantial differences in proportions of protected classes between the two datasets could suggest that
the source data and predicted data originate from differing populations (pictures of people on the internet), and
could thus indicate presence of bias against the protected class in question.

Leveraging p-values and powers calculated on our samples for our protected classes of age, gender, and race, may
enable us to identify biases that may manifest from one or both models. Leveraging F1 scores (as described below)
will help us identify specific cases of bias, and whether they are in favor of or against a specific group.

3.3.4 Notation

We introduce notation for the specific tests we perform:

Let 𝑅 be race, then 𝑅 ∈ {𝐴𝑠𝑖𝑎𝑛, 𝐵𝑙𝑎𝑐𝑘, 𝐼𝑛𝑑𝑖𝑎𝑛, 𝑂𝑡ℎ𝑒𝑟, 𝑊ℎ𝑖𝑡𝑒} = {𝐴, 𝐵, 𝐼, 𝑂, 𝑊}
Let 𝐺 be gender, then 𝐺 ∈ {𝐹𝑒𝑚𝑎𝑙𝑒, 𝑀𝑎𝑙𝑒} = {𝐹 , 𝑀}
Let 𝐴 be age, then 𝐴 ∈ {[0, 2], [3, 9], [10, 19], [20, 29], [30, 39], [40, 49], [50, 59], [60, 69], [70, 130]}; or 𝐴 =
{1, 2, 3, 4, 5, 6, 7, 8, 9}
Let 𝐷 be the dataset, then 𝐷 ∈ {𝑆𝑜𝑢𝑟𝑐𝑒, 𝐹𝑎𝑖𝑟𝑓𝑎𝑐𝑒, 𝐷𝑒𝑒𝑝𝑓𝑎𝑐𝑒} = {𝐷0, 𝐷𝑓 , 𝐷𝑑}

3.3.5 Proportion Testing of Subsets

Using this notation, we can simplify our nomenclature for testing a certain proportion of an overall demographic.

For example, we can test if the proportion of Female in the Fairface output is statistically different than the
proportion of Female from the source.

Hypothesis Test:

𝐻0 ∶ 𝑝𝐹,𝐷𝑓
= 𝑝𝐹,𝐷0

𝐻𝐴 ∶ 𝑝𝐹,𝐷𝑓
≠ 𝑝𝐹,𝐷0

P-value Calculation:
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𝑃(|𝑍| > ( ̂𝑝1 − ̂𝑝2)

√ ̂𝑝(1 − ̂𝑝)( 1
𝑛𝑝1

+ 1
𝑛𝑝2

)
),

where

• ̂𝑝1 = 𝑝𝐹,𝐷0
: proportion of females from the source data

• ̂𝑝2 = 𝑝𝐹,𝐷𝑓
: proportion of females from the FairFace output

Additionally, we could test for different combinations of subsets within demographics. For instance, if we wanted
to test for a statistically significant difference between the proportion of those who Female, given that they were
Black, as predicted by DeepFace, then we could write a hypothesis test like:

𝐻0 ∶ 𝑝𝐷𝑑,𝐹 |𝐵 = 𝑝𝐷0,𝐹 |𝐵

𝐻𝐴 ∶ 𝑝𝐷𝑑,𝐹 |𝐵 ≠ 𝑝𝐷0,𝐹 |𝐵

These were two specific hypothesis tests, however, we’ll be testing all combinations of these parameters and
reporting back on any significant findings.

In the above, we’ve outlined our methods for examining a total of 432 hypothesis tests per recognition model on
the totality of, and smaller samples of, our overall dataset. We have elected to sub-divide our source and predicted
samples by these protected classes to inspect and investigate bias against groupings of protected classes.

For instance, in the performance of our hypothesis tests, we may find lack of evidence for a bias when only
examining proportions of gender between samples. However, by examining a subset of our samples, such as
subject gender given the subject’s membership in a specific racial category, we may find biases in predictions of
subject gender given their membership in a specific racial group.

This could help us answer questions and draw conclusions about such groups. Examples of conclusions could
include:

“Model X demonstrates bias in predicting the race of older subjects.” Such a statement is not one of bias for or
against the target group, but that a bias exists. A bias in either direction, if used in a decision-making process,
could result in age discrimination.

“Model Y demonstrates bias in predicting gender, given the subject is Black, Asian, or Other.” Such a statement
is not one of bias for or against the target groups, but a statement that a bias exists. Such a bias, if used in a
decision-making process, could result in gender or racial discrimination.

Structuring our tests in this manner enables us to quickly analyze and report on the results of our tests.

3.4 Performance Measurement

We evaluate the performance of the models in order to choose which models to use (as described in the Data
section), to ensure data integrity, and to evaluate the hypothesis testing in context of performance. These measures
are not used in the calculation of the statistical/hypothesis testing.

There are four main measures of performance when evaluating a model:

• Accuracy
• Precision
• Recall
• F1-Score

Each of these performance measures has their own place in evaluating models; in order to explain the differences
between these metrics, we start with concepts of positive and negative outcomes.
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• True Positive: predicted positive, was actually positive (correct)
• False Positive: predicted positive, was actually negative (incorrect)
• True Negative: predicted negative, was actually negative (correct)
• False Negative: predicted negative, was actually positive (incorrect)

These outcomes can be visualized in a confusion matrix. In Figure 3.1, green are correct predictions while red are
incorrect predictions.

Figure 3.1: Confusion_matrix

3.4.1 Accuracy

Accuracy is the ratio of correct predictions to all predictions. In other words, the total of the green squares
divided by the entire matrix. This is arguably the most common concept of measuring performance. It ranges
from 0-1 with 1 being the best performance.

𝐴𝑐𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃+𝑇 𝑁
𝑇 𝑃+𝑇 𝑁+𝐹𝑃+𝐹𝑁

3.4.2 Precision

Precision is the ratio of true positives to the total number of positives (true positive + true negative).
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3.4.3 Recall

Recall is the ratio of true positives to the number of total correct predictions (true positive + false negative).

3.4.4 F1-Score

F1-Score* is known as the harmonic mean between precision and recall. Precision and Recall are useful in
their own rights, but the F1-Score is useful in the fact it’s a balanced combination of both precision and recall. It
ranges from 0-1 with 1 being the best performance.

F1-Score = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

When considering the classification of a subject by protected classes of age, gender, and race, we believe that
stronger penalties should be assigned in making an improper classification decision. Due to F1 being the harmonic
mean of precision and recall, incorrect classification will more directly impact the score of each model in its
prediction of protected classes, and do so more strongly than an accuracy calculation (Huilgol 2021).

We calculate F1 score as a measure of performance of our selected machine learning models. F1 scores will not be
considered when evaluating the results of our hypothesis testing or impact them in any way. We will compare our
results for F1 score against our hypothesis test results to examine possibility of correlation or fit of proportionality
tests as a means for predicting model performance. Separately, we will leverage F1 scores to examine biases for or
against protected classes.
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4 Results

4.1 Model Output

The two models, DeepFace and FairFace, were run on the dataset described previously. In Figure 4.1, one can
see the results of the predictions done by each model, by each factor that was considered: age, gender, and
race. Note that the total (across correct and incorrect) histogram distributions match the correct (source dataset)
distributions of values in each category, so we can see exactly the difference between what was provided and what
was predicted, along with how well each model did on each category within each factor.
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Figure 4.1: Histograms of the output from DeepFace and FairFace, with correct vs incorrect values colored. Note
that the distributions match the correct (source dataset) distributions.
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4.2 Model Performance, Hypothesis Testing

For each factor category and model, we calculate the F1 score, accuracy, p-value, and power, as described in section
3. Cell values are colored according to the strength of the metric; p-value is colored as to whether it crosses the
significance value threshold of 0.003. We calculate these metrics and hypothesis tests across all categories of each
factor, but also with conditional filtering on other factors; the value “All” indicates we did not filter/condition on
that factor. The column Test Factor indicates which factor we are calculating the proportion for that hypothesis
test. For example, the following column value subsets would indicate the given hypothesis test:

Test
Factor Age Gender Race Model Null Hypothesis Description
gender 0-2 Female All FairFace 𝑝𝐹,𝐷𝑓 |𝐴1

= 𝑝𝐹,𝐷0|𝐴1
𝐻0 : The proportions of Female
labels, given that the source age
label is 0-2, are equal.

race All All Black DeepFace 𝑝𝑅𝐵,𝐷𝑑
= 𝑝𝑅𝐵,𝐷0

𝐻0: The proportions of Black labels
are equal.

The results are summarized in Figure 4.2.

4.2.1 p-value Critical Values

From the previous table, we extract and highlight key values; namely, where we reject the null hypothesis and
where we do not, based on our criteria:

• Significance level of 99.7%
• Power threshold of 0.8
• F1-Score of 0.9

Disclaimer - we are not claiming that F1-scores and and p-values are directly tied to one another, but exploring
its use here as a means by which we can more confidently reject the null hypothesis.

Which come from the rationale described in Chapter 3. We show the test values where there is no sub-
filtering/conditions by another category; then, we also highlight the reverse null hypothesis decisions made with
filtering for a sub-condition and for the specific rows as described in the table captions. The values are displayed
in Table 4.2. There is only a Fairface table for not rejecting the null hypothesis (with no condition subfiltering)
because no DeepFace values passed our given thresholds for not rejecting; the same reasoning is why there is no
table for FairFace rejecting the null hypothesis with condition subfiltering.
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Figure 4.2: Screenshot of the interactive table showing F1 score, accuracy, p-value, and power, by each factor and
category evaluated by the models, with a potential filtering condition. To see and interact with this
table, go to the website link
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Table 4.2: Highlighted statistics/metrics for DeepFace and FairFace, that pass the given significance
level/power/F1-score thresholding.

Category p-Value Power F1 Score
age 70-130 2.83𝑒 − 43 1.0000 0.6271

3-9 1.37𝑒 − 05 0.9198 0.7176
10-19 5.22𝑒 − 05 0.8640 0.5052
0-2 3.11𝑒 − 06 0.9568 0.8960
20-29 2.14𝑒 − 08 0.9959 0.7333
40-49 1.65𝑒 − 08 0.9965 0.3944

race White 5.83𝑒 − 18 1.0000 0.8610
Black 7.46𝑒 − 12 1.0000 0.8685
Indian 8.84𝑒 − 94 1.0000 0.6402
Other 0.00𝑒00 1.0000 0.3087

Age Gender Race p-Value Power F1 Score
age 0-2 Male All 4.94𝑒 − 01 0.0120 0.9190

Category p-Value Power F1 Score
age 70-130 1.08𝑒 − 283 1.0000 NA

3-9 9.20𝑒 − 293 1.0000 NA
10-19 2.52𝑒 − 148 1.0000 0.0479
0-2 0.00𝑒00 1.0000 NA
20-29 2.00𝑒 − 65 1.0000 0.5054
30-39 0.00𝑒00 1.0000 0.3786
40-49 1.65𝑒 − 91 1.0000 0.2276
50-59 3.66𝑒 − 202 1.0000 0.0802
60-69 9.81𝑒 − 229 1.0000 0.0016

gender Female 1.18𝑒 − 97 1.0000 0.8198
Male 1.18𝑒 − 97 1.0000 0.8637

race White 2.70𝑒 − 27 1.0000 0.8095
Asian 1.75𝑒 − 143 1.0000 0.7039
Black 1.71𝑒 − 33 1.0000 0.7965
Indian 1.90𝑒 − 292 1.0000 0.4092
Other 4.64𝑒 − 262 1.0000 0.2389

Age Gender Race p-Value Power F1 Score
gender 30-39 Male All 7.70𝑒 − 02 0.1185 0.9224

Category p-Value Power F1 Score
gender Female 7.07𝑒 − 01 0.0053 0.9429

Male 7.07𝑒 − 01 0.0053 0.9476

4.3 Meta-Analysis Plots

In Figure 4.3, we show F1-score vs accuracy for all hypothesis tests that were performed. Note the relationship is
not perfectly linear.

In Figure 4.4 and Figure 4.5 we explore our research question of whether or not two-sample proportion tests can
approximate or predict the performance of a machine learning model. In each plot, we transform the p-value to 0
in cases where we would reject the null hypothesis, and 1 in cases for which we would fail to reject.

In Figure 4.6, we display confusion matrices of our null hypothesis rejections. We define the true/false posi-
tive/negatives as follows:
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Figure 4.3: F1-Score vs Accuracy for all hypothesis tests performed.
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Figure 4.4: p-value vs F1 score for all hypothesis tests performed.
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Figure 4.5: p-value vs accuracy score for all hypothesis tests performed.
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Predicted Classification Actual Classification Classification
p-value < 0.003 & pwr >= 0.8 F1 < 0.9 Reject Null
p-value >= 0.003 F1 >= 0.9 Fail to Reject Null
p-value < 0.003 & pwr < 0.8; pval is NA; pwr is NA F1 is NA Unknown/Further Inspection Needed

Using the above, the confusion matrices for FairFace and DeepFace are as follows:
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Figure 4.6: Confusion matrices of null rejection decisions.

4.4 Population Estmate Plots - UTK Face vs. Model

We used a resampling technique to produce estimated population proportion distributions for each sample. Each
resampling included 2000 samples of 500 subjects under their respective test conditions.

To support our analysis and conclusions, we leveraged a resampling technique (bootstrap sampling) to build ap-
proximations of each sample’s parent population. The resampling took 2000 samples of 500 random subjects, with
replacement, to build the estimated distribution of proportions in the population under specified test conditions.
The plots can be seen in Figure 4.7 to Figure 4.9. We find that these plots coincide with our hypothesis testing
results – namely, that higher p-values result in greater overlap between the predicted and actual distributions,
and lower p-values result in less overlap between the distributions. As such, these distributions will support us in
drawing our conclusions.
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Figure 4.7: Distribution Plots of Age
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Figure 4.8: Distribution Plots of Gender

Other White

Asian Black Indian

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5
0

10

20

30

0

10

20

30

sample proportion

de
ns

ity

datasource

DeepFace

UTKFace

DeepFace
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Figure 4.9: Distribution Plots of Race
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5 Conclusions

5.1 Summary of Conclusions

Before we proceed to more detailed analyses, we will provide our summarized conclusions and impactful findings.

Summarizing the answer to a key research question: We find that two-sample proportionality testing is not a good
fit for analyzing the performance of a machine learning model in our use case. Drawing conclusions on model
performance or bias using this method might be akin to judging the performance of a vehicle based solely upon
its fuel economy (without taking into account other factors like weight, torque, horsepower, and so forth).

To have a strong conclusion, we’d expect to find a strong connection between F1/Accuracy score and the results
of our proportionality testing. Generally, we do not see such a connection.

Some examples include:

Table 5.1: Proportionality Testing vs. Confusion Matrix Results

Model Test Group p-value F1 score Conclusion
FairFace 60-69 ~1 0.354 High p-value != High F1 score
FairFace Female, Given ’Other’ 2.58e-13 0.922 Low p-value != Low F1 score
DeepFace 20-29, Given ’Black’ 0.10 0.588 High p-value != High F1 score
DeepFace 40-69 <=1.23e-5 >0.928 Low p-value != Low F1 score

However, the cases in which the proportion testing produces a significant result could be indicative that the
training data for the facial recognition models, and the data we provided to them from UTKFace, have little to no
overlap between one another (in terms of features and qualities of the images). This could be a topic for further
research - i.e.:

• Are the differences a result of feature differences (lighting in the image, centering of the subject in the image)
between a model’s training data and the models’ classification predictions on novel images?

• Could the source population differences be a result of over or under representation of those categories in the
training data for each model?

Simply put, there are differences in the data and considerations used to train each model vs. the images we
evaluated on each model from UTKFace. Absent further research, with Accuracy and F1 scores accepted as best
practice - the results of our two-sample proportion hypothesis tests can only truly tell us that there is a difference
in the source populations for each of our samples.

On the examination of F1 scores, we have the following top findings per-model:
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Table 5.2: Evaluation of Model Performance Using F1 Scores

Model Findings
FairFace Preference in classifying the very young and old correctly. Excellence in

classifying gender given almost any other test categories. Lack of excellence
in racial classifications; preference in classification of Asian, White, and
Black over Indian and Other.

DeepFace Poor performance in approx. 75% of tested categories. Preference of Male
Classification over Female. Highest preference is to correctly classify White
subjects. Substantially poor performance in classifying Indian and Other
subjects. Failure to detect the very young and old (0-9, 70-130) and
generally poor in every age category, but more correct predictions of age
given the subject is White.

These preferential biases can result in discrimination if used for decision-making processes:

• FairFace’s poorer performance for Indian and Other categories is concerning. Especially considering that
“Other” includes groups such as Middle Eastern, Latino Hispanic, and more. With low F1 scoring, this could
be impactful on multiple racial groups. If used to make decisions, it could generate disparate impact against
Indian and Other.

• DeepFace’s combination of correct age given White as race could result in a combination of racial and age
discrimination against people of color.

These models freely available to the public. Were a developer to incorporate these models into a business product
to enable decision-making by stakeholders and/or customers, it opens the door to risk of discrimination on the
basis of protected classes. Having accountability, well-documented findings, and disclaimers in open-source models
is important.

DeepFace does note some of its shortcomings in its paper, and providing these disclaimers is necessary so that
users know both the capabilities and limiations of open-source systems before deciding where and how to use
them.

FairFace’s improvements show progress over the last few years in open-source ML models accounting for
race/age/gender gaps in prediction. That being said, there’s still further progress to be made. While it had great
performance in the young and old, and for both genders, the disparity in performance for Indian and Other races
is concerning.

We should, collectively, uphold standards for excellent, not just okay or good, performance, and these standards
should be upheld for all protected classes.

5.2 Evaluation of Test Results

To evaluate our tests, we will first examine our hypothesis tests, and then move on to evaluate F1 and Accuracy
scores. We theorize that our hypothesis testing, specifically in cases in which we reject the null, may tell us where
bias may exist in our data. Separately, F1 and Accuracy scores may tell us specific instances where bias exists in
favor of, or against, specific protected classes. Throughout this section, we will use the language “potential bias”
for any scenario in which we reject the null hypothesis.
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5.3 Hypothesis Testing Results

The design of our hypothesis testing provides us with cases in which datum from the source population differs
from that of the predicted population of each model. This may show where biases exist. When the hypothesis test
result produces a value less than 0.003 and with test power greater than or equal to 0.8, the test could be indicative
of bias. Inversely, a p-value greater than or equal to 0.003 will not provide sufficient evidence to indicate bias in
the given test case. The p-value alone, however, cannot tell us whether the indicated bias is in favor of, or against,
the protected class group(s) in question. This is because the the hypothesis tests only tell us the probability that
the source and predicted results come from the same population.

Table 5.3: Detailed Proportionality Testing Results

Model Test
Category

Potentially Effected Categories Potentially Effected Sub-Categories

FairFace Age 0-29, 40-49, and 70-130 0-19 (given Female), 40-49 (given
Male); varying potential biases
against sub-groups such as 0-2
(given Asian, Indian, Other, or
White), 3-9 (Given Asian), 10-19
(Other,White), 20-29 (Asian,
Black), 30-39 (Asian), 40-49
(White, Other), 50-59 (Other),
70-130 (Other, White, Black)

FairFace Gender No evidence supports a conclusion
of potential bias for gender alone

any gender (given 0-2, 20-39, or
70-130); any gender (given White
or Other)

FairFace Race Black, Indian, White, Other Black, Indian, Other (given any
gender), White (given male); Asian
(given 30-39)

DeepFace Age All age groups All age groups (given gender);
DeepFace Gender Both genders All genders (given Asian, Black,

Indian, Other - [White didn’t meet
power threshold]); All genders
(given age 10-69)

DeepFace Race All races All races (except Black, given
Male); All races (given 10-49),
Black (givne 50-69), and Indian
(given 60-69)

5.4 Examination of Potential Biases using F1 Scores

When examining p-values for potential areas of bias, our hypothesis testing results did not well-align with our
F1 score calculations. E.g. a rejection of the null hypothesis did not directly translate to a low F1 score, with
the inverse also being true. We proceeded to examine F1 scores, separate of p-value and power results from our
hypothesis tests.

General trends for both models: many categories and sub-categories of protected classes fail to meet our selected
definition of excellence (F1 score of 0.9 or more). FairFace had more results meeting our definition of excellence
compared to DeepFace. Both models demonstrate preference in classification for specific age groups, races, and
genders, and both seem to display biases against Indian and Other racial categories. Examining a particular class
of subjects, given additional controlling variables, reveal nested biases for and against various classes.
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Table 5.4: Confusion Matrix - F1 Scoring Results

Model Test
Category

Impacted Categories Impacted Sub-Categories

FairFace Age No groups meet 0.9 threshold.
Preference in classifying the young
and old correctly (0-9, 20-29, and
70-130); all other categories fall
below 0.7, and between 0.1 to 0.4
below these top groups

Given gender, the top performing
groups remain, with a preference
for Female classification over Male
in the groups. Given race, the very
young meet excellence for 0-2, given
Other, Asian, or White. 10-69 fall
far behind given any racial group

FairFace Gender Both genders meet standard for
excellence.

Given race, all genders meet
excellence, except male, given
Asian at 0.89. Given age, all
genders meet excellence, less males
given 0-9, and females given 0-2

FairFace Race None reach excellence. Preference
for Asian, Black, White (Other,
Indian fall 0.2-0.3 less than these
groups)

Given gender, model retains
preference for classifying for Asian,
White, Black. Given Age,
excellence reached for White (given
3-9,60-69,)

DeepFace Age All ages perform poorly (max F1
0.51). 0-9,70-130 (0 detections) and
10-19, 50-69 (very few detections at
F1 < 0.1)

All groups (given gender), male
performance slightly surprasses
female performance in every age
category. Additional age groups fail
detection (0 count) for 60-69, given
White, Asian, or Indian.

DeepFace Gender Near equal performance on both
genders, male preferred over
female.

No gender classifications meet
excellence, given race. Preference
for Male over Female for near all
races (excluding Other). Preference
for stronger male classification,
given 40-69, and female, given
10-39.

DeepFace Race None meet excellence. Bias against
Indian, Other with F1 <= 0.4

Poor for all races (given gender),
with slightly lower performance for
race classificaiton given a female
subject.

5.4.1 Age

When examining the results of the F1 scores for age, no categories for DeepFace met our specification for excel-
lence. This identifies potential points of improvement in age categorization on part of DeepFace. As DeepFace is
unable to detect faces between the ages of 0-9 and 70-130, there is a bias against very young and very old faces.
Additionally, The group with the highest F1 performance is 20-29, implying a favorable bias towards subjects in
early adulthood.

FairFace’s overall age calculations, absent other conditional variables, failed to produce any category that met our
F1 threshold, implying lack of excellence in correct predictions for any one age group. However, the categories
that did perform the best had a preferential bias towards the very young and very old faces, almost in opposition
to DeepFace; FairFace displayed a preferential bias towards the ages of 0-9 and 70-130. When examining specific
sub-categories, FairFace presented notable favorable bias to identify male faces between the ages of 0-2 in the
White, Asian, and Other categories, as only those categories passed the F1 threshold.
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5.4.2 Race

Compared to age results, race performs significantly worse for both DeepFace and FairFace, due to the fact that
no racial category on its own reaches our F1 threshold. Both models show preference for certain races. In order of
preference, DeepFace shows a preferential bias for classifying White, Black, and Asian faces, and FairFace shows
a similar bias for classifying Asian, Black and White faces. Indian and Other faces perform the worst overall for
both models, with significantly lower F1 scores than the preferred categories, by at least 0.2 for FairFace and 0.3
for DeepFace. As such, these preferences are substantial.

In terms of race with additional control variables, DeepFace demonstrates exceedlingly poor performance. No
category for race given age scores surpassed our F1 threshold. Overall, White faces score the highest, provided
the identified faces are not 0-9. For FairFace, the only noted bias was a preference for Asian faces younger than
20, and White faces in the ranges of 0-9 and 60-130. For gender-specific biases, there are also no categories that
meet or surpass our F1 threshold, but it should be emphasized that DeepFace identified male faces for all races
better than female faces. FairFace had a similar performance, except for Indian faces, where male faces scored
above female ones.

5.4.3 Gender

Gender shows a similar pattern as race for overall evaluation. DeepFace fails to have any category meet or exceed
our F1 threshold, but male faces do show a slightly higher score than female ones. FairFace had both male and
female faces score above 0.9, showing a notably positive performance, with little to no difference between males
and females.

DeepFace did show preference for certain genders given age, with the range of 30-69 performing above 0.9 for male
faces, but only females age 20-29 were significant. This implies a positive bias towards identifying older male faces,
as well as bias towards younger adult women. FairFace was more balanced, with significant scores for most age
groups except for females age 0-2, and males 0-9. This showcases a negative bias against very young people in
general, and particularly male children. For Gender given race, DeepFace had no statistically significant f1 scores,
but did show a positive bias towards White faces, and negative biases towards Asian faces of all genders, and
Black female faces. FairFace was far better in all categories, with f1 scores over 0.9 for all categories except Asian
male faces. Therefore, it shows a significant negative bias against identifying Asian male faces.

5.5 Areas for Further Research

• Do the differences in source populations between an source dataset (i.e. UTKFace) and a facial recognition
model indicate any of the following:

– feature differences between a model’s training data and the model’s classification predictions on novel
images?

– A difference in the specific features trained in each model?

– A lack of overlapping features or qualities from the source and predicted dataset?

• Do source population similarities between the datasets indicate any of the following:

– similar features between model training dataset and source dataset?

– Presence of the same images between the model training dataset and source dataset?
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5.6 Mathematical Support for Conclusions on Hypothesis Testing

F1 and Accuracy scores are generally accepted as best practice in evaluating the efficacy of machine learning
models. From our tests, we saw contradictions between two-sample proportion tests and F1/Accuracy scores with
respect to each model. This is directly evident from Figure 4.4 and Figure 4.5 with a clear lack of correlation of
any type between the variables, for all our 432 hypothesis tests.

We can examine this further. An Accuracy or F1-score of 0.9 is a reasonable threshold for an “excellent” peforming
model. We could set this this threshold as analogous to the outcomes of a hypothesis test. If a model is performing
well, we would expect there wouldn’t be enough evidence to reject the null hypothesis (i.e. equal proportions
between the source and model could not be statistically rejected). If a model is is not peforming well, we would
expect there to be enough evidence suggesting we should reject the null hypothesis in favor of the alternative
hypothesis (i.e. there was enough evidence the proportions between the source and model were not equal).

In that perspective, if we assume that the sample outputs’ F1 scores should reject the null hypotheses when below
a certain threshold, and fail to reject when above 0.9, we can build a confusion matrix of “prediction” to reject
or fail to reject the null using two-sample proportion tests, in comparison to a “correct” result using sample out
F1 scores. We should use this same threshold, as it’s the same that we set for each model in evaluating protected
classes.

Pursuing such an evaulation is an appropriate approach, because the methods we’ve leveraged for attempting to
examine bias using proportionality testing is a model, just as classification of inputs and outputs using confusion
matrices is a model. A standard method of evaluating model performance is via confusion matrices.

Such matrices produce the following results when evaluating our sample outputs:

Table 5.5: F1 and Accuracy Scores for Proportionality Tests as a Performance Measurer

model test categorization accuracy F1 threshold
DeepFace Class: Reject null 0.4539493 0.5400000 0.9
DeepFace Class: Fail to reject null 0.6257857 0.4255319 0.9
DeepFace Class: Unknown 0.3755174 0.0227273 0.9
FairFace Class: Reject null 0.5386997 0.4898990 0.9
FairFace Class: Fail to reject null 0.5223073 0.5174825 0.9
FairFace Class: Unknown 0.4559165 NaN 0.9

Table 5.6: Pearson Correlation Between F1 Scores and Proportionality p-values

Model p-values Pearson Correlation Coefficient Confidence Level
FairFace 0.0011798 0.1346131 0.95
DeepFace 0.0264197 0.1557421 0.95

Assuming that a correct decision to reject or fail to reject the null should be based upon an F1 and Accuracy
scores at multiple thresholds (0.9, 0.8, or 0.7), we see substantially low accuracy and F1 scores for two-sample
proportionality tests as a model for predicting machine learning model performance. Examining any type of
Pearson correlation between the p-values and F1 scores, we see similar results. This highlights the contradictions
we witnessed in our results for two-sample proportion tests vs. leveraging accuracy and F1 scores. Given These
results, we find that two-sample proportionality testing is likely not a strong indicator to identify issues and errors
in machine learning models.

33



References

Buolamwini, Joy. 2023. “Gender Shades: Intersectional Accuracy Disparities in.” MIT Media Lab.
https://www.media.mit.edu/publications/gender-shades-intersectional-accuracy-disparities-in-commercial-
gender-classification.

Georgetown Law. 2016. “The Perpetual Line-Up: Unregulated Police Face Recognition in America.” Center on
Privacy & Technology. https://www.perpetuallineup.org.

Huilgol, Purva. 2021. “Accuracy vs. F1-Score - Analytics Vidhya - Medium.” Medium, December. https:
//medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2.

Karkkainen, Kimmo, and Jungseock Joo. 2021. “FairFace: Face Attribute Dataset for Balanced Race, Gender,
and Age for Bias Measurement and Mitigation.” In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 1548–58.

Lohr, Steve. 2018. “Facial Recognition Is Accurate, if You’re a White Guy.” N.Y. Times, February. https:
//www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html.

NIST. 2020. “NIST Study Evaluates Effects of Race, Age, Sex on Face Recognition Software | NIST.” NIST.
https://www.nist.gov/news-events/news/2019/12/nist-study-evaluates-effects-race-age-sex-face-recognition-
software.

Serengil, Sefik Ilkin, and Alper Ozpinar. 2021. “HyperExtended LightFace: A Facial Attribute Analysis Frame-
work.” In 2021 International Conference on Engineering and Emerging Technologies (ICEET), 1–4. IEEE.
https://doi.org/10.1109/ICEET53442.2021.9659697.

“UTKFace.” 2021. UTKFace. https://susanqq.github.io/UTKFace.

34

https://www.media.mit.edu/publications/gender-shades-intersectional-accuracy-disparities-in-commercial-gender-classification
https://www.media.mit.edu/publications/gender-shades-intersectional-accuracy-disparities-in-commercial-gender-classification
https://www.perpetuallineup.org
https://medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2
https://medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
https://www.nist.gov/news-events/news/2019/12/nist-study-evaluates-effects-race-age-sex-face-recognition-software
https://www.nist.gov/news-events/news/2019/12/nist-study-evaluates-effects-race-age-sex-face-recognition-software
https://doi.org/10.1109/ICEET53442.2021.9659697
https://susanqq.github.io/UTKFace

	Abstract
	Introduction
	Data
	Data Selection
	Motivation
	Data Collection Method
	Dataset Features
	Sources and Influences of Bias in the Dataset
	Exploration of Source Data
	Assumption of Sample Independence

	Selected Models
	FairFace
	DeepFace
	FairFace Outputs
	DeepFace Outputs

	Evaluating Permutations of Inputs and Models for Equitable Evaluation
	DeepFace Analysis Options
	FairFace Analysis Options
	Specific Permutations

	Model Evaluation Data Format

	Methods
	Data Cleaning: Standardizing Model Outputs
	FairFace Output Modifications
	DeepFace Output Modifications
	Source Data Modifications

	Exploratory Data Analysis (EDA)
	Hypothesis Testing
	Demographics
	Demographics' Subgroups
	The General Proportion Tests
	Notation
	Proportion Testing of Subsets

	Performance Measurement
	Accuracy
	Precision
	Recall
	F1-Score


	Results
	Model Output
	Model Performance, Hypothesis Testing
	p-value Critical Values

	Meta-Analysis Plots
	Population Estmate Plots - UTK Face vs. Model

	Conclusions
	Summary of Conclusions
	Evaluation of Test Results
	Hypothesis Testing Results
	Examination of Potential Biases using F1 Scores
	Age
	Race
	Gender

	Areas for Further Research
	Mathematical Support for Conclusions on Hypothesis Testing

	References

